close

Вход

Забыли?

вход по аккаунту

?

З досвіду роботи вчителів

код для вставкиСкачать
З досвіду роботи
вчителів математики та
фізики
Вілєгжаніної Т.В. та
Долінко О.В.
Загальношкільна проблема
Забезпечення якісної освіти учнів закладу
в умовах особистісно-зорієнтованого і
компетентнісного навчання
Проблема ШМО вчителів
математики, фізики та
інформатики
Формування математичних, фізичних ,
інформатичних компетентностей.
З точки зору компетентнісно зорієнтованого підходу до
організації навчально-виховного процесу, зміст
математичної освіти має бути спрямований на досягнення
таких цілей:
інтелектуальний розвиток учнів, формуваня видів мислення,
характерних для математичної діяльності і необхідних людині
для повноцінного життя у суспільстві;
оволодіння прийомами математичної діяльності, які необхідні
у вивченні суміжних предметів для продовження навчання та
в практичній діяльності;
формування уявлень про математику як форму опису і метод
пізнанння дійсності;
виховання учнів у процесі навчання математики;
формування позитивного ставлення та інтересу до
математики.
Математичні та фізичні
компетентності
процедурна компетентність – уміння розв’язувати
типові математичні та фізичні задачі.
логічна компетентність – володіння дедуктивним
методом доведення та спростування тверджень.
технологічна компетентність – володіння
сучасними математичними пакетами.
дослідницька компетентність – володіння
методами дослідження практичних та прикладних
задач математичними методами.
Компоненти компетентностей
мотиваційний – внутрішня мотивація,
інтерес;
змістовний – комплекс математичних
знань, умінь та навичок;
дійовий – навички навчальної праці
(самостійність, самооцінка, самоконтроль).
Інтегрований урок —
це в основному урок систематизації та узагальнення знань,
умінь і навичок учнів, його структурою є: повідомлення
теми, цілей та завдань уроку; мотивація навчальної
діяльності учнів; актуалізація та корекція опорних знань;
повторення й аналіз основних фактів, подій, явищ; творче
перенесення знань і навичок учнів у нові ситуації;
узагальнення та систематизація знань учнів, основних ідей
та наукових теорій, предметів, що є складовими
інтегрованого уроку. Завдання вчителя полягає в тому,
щоб встановлювати міжмредметні зв'язки для розробки
інтегрованих уроків та їх проведення. Визначення теми
уроку, обговорення його змісту й методики проведення,
складання плану вимагають творчого підходу та
комбінованого погляду на тему. Інтегровані уроки
цілеспрямовані й певною мірою знімають кордони
предметного викладання, допомагають учням емоційно й
системно сприймати запропонований матеріал, реалізують принципи єдності навчання і виховання, наочності,
доступності, самостійності, активності – учні вчаться
співпрацювати.
Гармонічні коливання
Інтегрований урок математики і фізики в 10
класі
Мета: формувати математичну та
фізичну компетентність учнів
Дидактична
Розвиваюча
Виховна
ДИДАКТИЧНА
вчитися будувати графік
функції гармонічних коливань;
формувати вмінь перетворювати
графік тригонометричних функцій;
вивчити фізичний зміст
величин, що входять в рівняння
гармонічного коливання
показати межпредметний зв’язок
областей математики,фізики, інформатики;
вчити «читати» графіки
тригонометричних функцій та будувати їх;
Розвиваюча
розвивати дослідницьку
та пізнавальну діяльність учнів;
розвивати комунікативні
здібності учнів;
формувати мислення
(аналізувати, систематизувати, узагальнювати,гнучкість)
Виховна
виховувати охайність,
культуру поведінки та мови;
сприяти розширенню
кругозору учнів
формувати науковий
світогляд учнів.
Завдання
уроку:
Розвивати дослідницьку та пізнавальну діяльність учнів.
Показати практичне застосування гармонічних коливань.
Показати взаємозв’язок між основними поняттями фізики та
алгебри.
Розвивати комунікативні здібності учнів.
Гармонічні коливання вивчаються в курсі алгебри та фізики.
Таким чином, ми будуємо місток: вивчаючи поняття в одному
курсі, складаємо базу для іншого курсу. Повторюючи потім ці
поняття в курсі алгебри та фізики, ми закріпимо його на
практичному рівні.
Структура уроку:
Організаційний момент 2 хв
Постановка цілей уроку. Мотивація
навчальної діяльності. 5 хв
Вивчення нового матеріалу. 35 хв
Закріплення матеріалу. 30 хв
Підсумок уроку.
10 хв
Домашнє завдання.
5 хв
Постановка цілей уроку. Мотивація
навчальної діяльності.
Фізик: Відомий
італійський вчений
Галілей говорив:
«Філософія написана
в тій величній книзі,
яка завжди відкрита в
нас перед очима (я
маю на увазі Всесвіт),
але яку неможливо
зрозуміти, якщо
заздалегідь не
вивчити її мову».
Математик: Її мова
– це мова математики.
Математика здавна
має репутацію
найточнішої галузі
знань і є надійним
знаряддям розкриття
таємниць природи
Постановка проблемного
питання:
Математик: Приємно
розпочати урок з такого
прекрасного музичного
супроводу. Та, сподіваюсь,
присутні в цьому факті
вбачають й іншу сторону.
Фізик: А ось ми в них
зараз і запитаємо. Як ви
думаєте, що пов’язує
музику з темою нашого
уроку?
Звучання струни, рух
маятника, морські
припливи,
найрізноманітніші
біоритми живих організмів
– все це лише окремі
приклади у нескінченній
множині коливних або
періодичних явищ.
Математик: А щоб описати їх, поставити
на службу, людям треба побудувати
математичні моделі таких явищ.
Математичний опис періодичних процесів
створювали вже вчені стародавнього світу.
Так, вавилонські астрономи деякі
закономірності руху Місяця і Сонця виразили
у вигляді спеціальних таблиць, які вони
назвали функціями. Теорія тригонометричних
функцій, яку ми вивчали, теж є однією з
найдавніших моделей періодичних явищ.
Вивчення нового матеріалу
Сьогодні на уроці ми продовжимо
вивчення тригонометричних функцій.
Мета нашого уроку – розглянути
приклади коливальних рухів, описати їх за
допомогою математичних законів;
навчитися будувати графіки
тригонометричних функцій.
Y=cosx
y=sin x
Y=sin(2x)
Y= sin (2x + 2π/3)
y = 3 sin (2x + 2π/3)
Чим відрізняються дані
графіки?
Закріплення нового
матеріалу
Фізик: Людина зустрічається з коливаннями і
використовує їх у різних сферах своєї діяльності.
У яких саме?
Математик: Та чи завжди коливання є
корисними?
Фізик: Вібрації.
Математик: Зрозуміло, що вібраційна
хвороба – це дуже серйозне захворювання .Люди
яких професій можуть захворіти нею?
Підсумок уроку
Фізик: Завершуємо урок.
Хочеться підкреслити, що
коливання не є одним із
типів руху в ряді інших, а
являють собою
фундаментальне явище,
елемент того таємничого
«алфавіту», за допомогою
якого природа створює
все, що нас оточує.
Математик: Отже, друзі,
чи згодні ви з тим, що
глибокому дослідженню
фізичних процесів
допомагає математика?
Тож що потрібно для того,
щоб дослідити фізичне
явище? А які моделі і
методи ми
використовували
сьогодні?
Фізик: На сьогоднішньому
уроці ми ще раз
переконалися в тому, що
математичні теорії є
надійним знаряддям у
розкритті таємниць
природи. А коливання, про
які ми говорили сьогодні,
якщо будуть
контролюватись людиною,
будуть приносити велику
користь. Але вони можуть
перетворитися і на
заклятого ворога. Тому
треба вивчати коливання,
знати їх властивості. І тут
без математичних
розрахунків точно не
обійтись.
Математик: А я не
втримаюсь, щоб не
процитувати слова
індійського математика
Бхаскара ІІ (ХІІ ст.): «Я
глибоко шаную
математику, бо ті, хто
знайомі з нею, вбачають у
ній засіб до розуміння
всього існуючого».
Домашнє завдання:
Творча робота. Уявіть собі, що ви сьогодні
запросили на міжнародний симпозіум з
дослідження коливальних процесів . З
якого питання ви змогли б виступити,
напишіть короткий зміст свого виступу на
цьому симпозіумі.
Документ
Категория
Презентации по философии
Просмотров
135
Размер файла
194 Кб
Теги
1/--страниц
Пожаловаться на содержимое документа