close

Вход

Забыли?

вход по аккаунту

?

Презентация

код для вставкиСкачать
ЛЕКЦИЯ 27. Курс: “Проектирование систем: Структурный подход”
Каф. “Коммуникационных сетей и систем”, Факультет радиотехники и кибернетики
Московский физико-технический институт (университет)
Марк Ш. ЛЕВИН
Институт проблем передачи информации, РАН
Email: mslevin@acm.org / mslevin@iitp.ru
ПЛАН:
1.Иерархический подход к диагностике сложных систем
2.Иерархическое оценивание составной системы: пример для здания:
*модель здания и шкалы оценки для частей здания
*метод интегрирующих таблиц
*иерархический комбинаторный синтез
*операции изменения и планирование процесса upgrade
Ноябрь 12, 2004
Много-уровневая диагностика сложной (составной) системы
УПРАВЛЕНИЕ
ВХООД
ПРОЦЕСС
ДИАГНОСТИКА
ВЫХОД
Много-уровневая диагностика сложной (составной) системы
ПРОЦЕСС
F1
F2
F3
F6
F4
F1
F5
F2&3
F2
F4&5
F3
F4
F6
F5
Много-уровневая диагностика сложной (составной) системы
ШКАЛА
2
1
РАЗРУШЕНИЕ
F1
ПЛОХО
F2
3
4
ХОРОШО ОТЛИЧНО
F3
F4
F5
F6
Много-уровневая диагностика сложной (составной) системы
F2&3
F4&5
F2
F4
F3
F1 и F2&3 и F4&5 и F6
F5
РЕЗУЛЬТИРУЮЩАЯ ОЦЕНКА
Example of building (evaluation from the viewpoint of earthquake engineering)
Parapet
wall
Cantilever
balcony
Generalized ordinal scale for damage
1
1.Distriction (global)
2
2.Distriction (local)
3
3.Chinks
4
4.Small chinks (hair like)
5
5.Without damage
X
Hierarchical model of building and corresponding scales
Building: S = A*B*C
X
Foundation 1.1
X
X
A
Floors 1.3
Basic
structure 1.2
C
X
B
X
X
Bearing
structures 1.2.1
X
Example 1
Example 2
D
Frame 1.2.1.1
X
X
Nonbearing
structures 1.2.2
E
Rigity core
1.2.1.2
X
X
X
G
F
Staircase
1.2.1.3
X
H
Partitioning
walls 1.2.2.2
Filler
walls 1.2.2.1
X
I
X
J
Method 1: integration tables
Bearing structures D (1.2.1), scale [3,4,5]
E
3
3
3
3
3
3
5
5
5
5
5
5
4
4
4
4
4
4
G
4
4
4
5
5
5
4
4
4
5
5
5
4
4
4
5
5
5
H
3
4
5
3
4
5
3
4
5
3
4
5
3
4
5
3
4
5
D
3
3
3
3
3
4
4
4
4
5
3
4
3
4
4
Method 1: integration tables
Nonbearing structures F (1.2.2), scale [2,3,4,5]
2
3
3
-
2
3
3
4
4
4
5
2
3
4
5
J
2
3
4
5
I
Method 1: integration tables
Basic structure
B (1.2), scale [2,3,4,5]
2
3
-
3
4
4
4
5
5
2
3
4
5
F
3
4
5
D
Method 1: integration tables
Building S, scale [2,3,4,5]
A
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
B
2
2
2
2
3
3
3
3
4
4
4
4
5
5
5
5
C
2
3
4
5
2
3
4
5
2
3
4
5
2
3
4
5
S
2
2
3
3
-
A
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
B
2
2
2
2
3
3
3
3
4
4
4
4
5
5
5
5
C
2
3
4
5
2
3
4
5
2
3
4
5
2
3
4
5
S
2
3
3
4
4
5
A
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
B
2
2
2
2
3
3
3
3
4
4
4
4
5
5
5
5
C
2
3
4
5
2
3
4
5
2
3
4
5
2
3
4
5
S
2
3
3
4
4
-
Method 2: Hierarchical morphological design (combinatorial synthesis)
Building: S = A*B*C
Foundation 1.1
B
A
A1(2)
A2(1)
A3(2)
Bearing
structures 1.2.1
D1=E1*G1*H1
...
D12= . . .
Frame 1.2.1.1
B1=D1*F7
...
B16= . . .
Rigity core
1.2.1.2
Staircase
1.2.1.3
G
H
G1(1)
G2(2)
Floors 1.3
C
H1(1)
H2(2)
H3(3)
C1(1)
C2(3)
C3(3)
Nonbearing
structures 1.2.2
F1=I1*J1
...
F12= . . .
D
E
E1(1)
E2(2)
Basic
structure 1.2
S1=A2*B1*C1
S2=A2*B3*C1
S3=A2*B4*C1
S4=A2*B13*C1
F
Filler
walls 1.2.2.1
I
I1(2)
I2(2)
I3(1)
I4(1)
Partitioning
walls 1.2.2.2
J
J1(1)
J2(3)
J3(2)
Method 2: Hierarchical morphological design (combinatorial synthesis)
Design Alternatives for Building
Foundation A : A1 (strip foundation), A2 (bedplate foundation), A3 (isolated parts)
Frame E
: E1 (monolith frame), E2 (precast frame)
Rigidity core G : G1 (monolith rigid core), G2 (precast rigid core)
Stair case H : H1 (monolith staircase), H2 (precast staircase), H3 (composite staircase)
Filler walls I : I1 (small elements), I2 (curtain panel walls),
I3 (precast enclose panel walls), I4 (frame walls)
Partitioning walls J : J1(precast panel walls), J2 (small elements), J3 (frame walls)
Floors
C : C1 (monolith slabs), C2 (composite slabs), C3 (precast slabs)
Method 2: Hierarchical morphological design (combinatorial synthesis)
Compatibility
G1
E1 3
E2 2
G1
G2
G2
H 1 H2
H3
2
1
3
2
3
2
2
2
1
1
1
1
2
1
J1
J2
J3
I1
I2
I3
I4
1
1
1
2
1
2
3
1
3
3
1
3
NOTE: 3 corresponds to the best level of compatibility
0 corresponds to incompatibility
Method 2: Hierarchical morphological design (combinatorial synthesis)
Compatibility
D1
D2
D3
D4
D5
D6
D7
D8
D9
D10
D11
D12
F1
F2
F 3 F4
F5
F6
F7
F8
F9
F10
3
2
2
2
2
2
2
2
2
2
1
2
3
2
2
2
2
2
2
2
2
2
1
2
3
2
2
2
2
2
2
2
2
2
1
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
3
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
3
2
F11 F12
2
2
2
2
2
2
2
2
2
2
2
2
NOTE: 3 corresponds to the best level of compatibility
0 corresponds to incompatibility
3
2
2
2
2
2
2
2
2
2
2
2
Method 2: Hierarchical morphological design (combinatorial synthesis)
Compatibility
C1
A1 2
A2 3
A3 2
C1
C2
C3
C2
C3 B1
B3
B4
B13
2
2
2
2
2
2
2
3
2
3
3
2
2
3
2
3
3
2
1
2
1
2
2
3
2
3
2
3
3
2
NOTE: 3 corresponds to the best level of compatibility
0 corresponds to incompatibility
Method 2: Hierarchical morphological design (combinatorial synthesis)
Examples for building :
Si = A1 * (E1 * G1 * H1) * (I3 * J1) * C1
estimate 2 (Pareto-layer)
Sii = A2 * (E2 * G2 * H2) * (I3 * J1) * C1
estimate 2 (Pareto-layer)
Siii = A1 * (E2 * G2 * H2) * (I3 * J1) * C3
estimate 3
Siv = A2 * (E2 * G2 * H2) * (I3 * J1) * C3
estimate 3
Sv = A1 * (E2 * G1 * H1) * (I3 * J3) * C3
estimate 4
Improvement (upgrade) of building
Operation group I (frames):
O1 increasing a geometrical dimension and active reinforcement
O2 increasing of active reinforcement
Operation group II (joints):
O3 increasing a level for fixing a longitudinal active reinforcement in zone of joints
O4 decreasing the step of reinforced cross rods in zone of joint
Operation group III (cantilever and cantilever balcony):
O5 decreasing the projection cantilever
O6 supplementary supporting the cantilever
Operation group IV (fronton and parapet wall):
O7 fixing a bottom part
O8 designing a 3D structure (special)
Operation group V (connection between frame and filler walls):
O9 design of shear keys
O10 design of mesh reinforcement
O11 partition of filler walls by auxiliary frame
Improvement (upgrade) of building
BINARY RELATIONS OVER IMPROVEMENT OPERATIONS
Binary relation “equivalence” and “nonequivalence”
Binary relation “complementarity” and “noncomplementarity”
Binary relation “precedence”
CRITERIA FOR IMPROVEMENT OPERATIONS
Group 1. Improvement of earthquake resistance
Group 2. Quality of architecture and plan decisions
Group 4. Utilization properties
Group 4. Expenditure
Improvement (upgrade) of building
COMBINATORIAL MODELS FOR PLANNING OF IMPROVEMENT
Model 1: Knapsack
Model 2: Multiple choice problem
Model 3: Multiple criteria ranking
Model 4: Morphological clique problem
Model 5: Scheduling
ETC.
Combinatorial synthesis for planning of redesign (improvement, upgrade)
Improvement : S = A*B*(C*D)*E
A
B
O1(3)
O2(1)
O1&O2(4)
None
E
O3(32)
O4(1)
O3&O4(2)
None
Strategy:
C
O5(3)
O6(4)
None
D
O7(3)
O8(2)
None
O2 => O4 => O5&O7(4) => O10
O9(3)
O10(2)
O11(3)
None
Документ
Категория
Презентации
Просмотров
4
Размер файла
120 Кб
Теги
1/--страниц
Пожаловаться на содержимое документа