close

Вход

Забыли?

вход по аккаунту

?

Sidorova - Плазменные процессы в Солнечной системе

код для вставкиСкачать
Долготная статистика плазменных
“пузырей”, видимых на высотах
верхней ионосферы в
концентрации Не+
LARISA SIDOROVA
Pushkov Institute of Terrestrial Magnetism,
Ionosphere and Radiowave Propagation (IZMIRAN)
142190 Troitsk Moscow region
RUSSIA
E-mail: lsid@izmiran.ru
Содержание
1.
Области пониженной концентрации Не+
(или субпровалы)
2.
Почему они были отнесены к плазменным
пузырям (баблам) экваториальной ионосферы?
3.
Долготная статистика
4.
Влияние солнечной активности
5.
Заключение
Questions
WHAT are the He+ density
depletions?
WHERE is the typical region
of their occurrence?
ISS-b Data
ISS-b
16 Feb.1979
105
He+ DENSITY, cm-3
Karpachev, Sidorova, ASR, 2002
Rev.: 4903
Equatorial
trough in
He+ density
104
LIT
103
LIT
102
101
7:51
20:01
72
-72
He+ DENSITY, cm-3
105
104
7:57
22:54
56
-52
ISS-b
8:04
0:10
40
-33
8:10
0:52
28
-14
8:16
1:23
25
6
8:23
1:53
36
27
21 Apr.1979
8:29
2:31
52
49
8:36
3:32
67
67
8:42
5:53
74
70
UT
LST
INVLAT
DIPLA
Rev.: 5761
Equatorial
trough in
He+ density
LIT
103
LIT
102
101
4:32
22:25
71
73
4:38
23:42
55
53
4:44
0:25
40
31
4:51
0:57
29
11
4:57
1:28
28
-9
5:04
2:09
38
-26
5:10
3:20
52
-40
5:16
5:59
64
-50
UT
LST
INVLAT
DIPLA
Typical He+ densities as
measured by ISS-b
(1978-79) F10.7~200, the
topside ionosphere
(~1100 km)
The depletions or socalled subtroughs in He+
density.
He+ density subtroughs
ISS-b
16 Feb.1979
Karpachev, Sidorova, 2002
Rev.: 4903
H e + D E N S IT Y , c m -3
10 5
Equatorial
trough
10 4
LIT
10 3
LIT
10 2
10 1
7:51
20:01
72
-72
H e + D E N S IT Y , c m -3
10 5
10 4
7:57
22:54
56
-52
ISS-b
8:04
0:10
40
-33
8:10
0:52
28
-14
8:16
1:23
25
6
8:23
1:53
36
27
21 Apr.1979
8:29
2:31
52
49
8:36
3:32
67
67
8:42
5:53
74
70
UT
LS T
IN V LA T
D IP LA
Rev.: 5761
Equatorial
trough
LIT
10 3
LIT
10 2
10 1
4:32
22:25
71
73
4:38
23:42
55
53
4:44
0:25
40
31
4:51
0:57
29
11
4:57
1:28
28
-9
5:04
2:09
38
-26
5:10
3:20
52
-40
5:16
5:59
64
-50
UT
LS T
IN V LA T
D IP LA
Subtroughs should be defined as a wellpronounced depletion in He+ density
from several times to two orders of magnitude
density may drop within 5-10 latitude
equatorward of LIT.
Karpachev, Sidorova, 2002
IN V A R IA N T L A T IT U D E , d e g .
IN V A R IA N T L A T IT U D E , d e g .
He+ density subtroughs
60
55
50
45
40
35
30
25
20
15
10
0
1
2
3
4
5
6
7
60
55
50
45
40
35
30
25
20
15
10
0
8
RESEARCH
SUBJECT
2000
1800
1600
1400
1200
1000
800
600
400
200
HEIGHT, km
~ 440 cases in
~4000 passes
1
2
3
4
5
6
7
8
Kp
Kp
~ 260 cases in
~4000 passes
0 5 10 15 20 25 30 35 40 45 50 55 60
INVARIANT LATITUDE, deg.
1
1.35
1.5
L-SHEET
2
3
4
QUESTION:
Why He+ density depletions were
interpreted as plasma bubbles?
PLASMA
BUBBLES
Paxton et al., 2005
Å after
This idea wasGUVI
put 1356
forward
comparative analyses
with typical characteristics of
equatorial plasma bubbles
with dynamics of the equatorial
trough in He+ density
with equatorial vertical plasma drift
velocity
with ESF
COMPARISON
lg(He+)
with typical characteristics
of the plasma bubbles
POST-SUNSET HOURS
2 NOV. 1979
Day
Night
Typical local time of the He+ density depletion
occurrence is the post-sunset hours like for ESF and
equatorial plasma bubbles.
GUVI 1356 Å
4
3 NOV. 1979
3
Day
Night
4 NOV. 1979
Day
Night
TRAINS OF THE DEPLETIONS
There are the single cases of the depletions and there
are the trains of the depletions, observed in the
consequent satellite passes. They occur like the trains of
the plasma bubbles, revealed in the different
observations (optical, radar, ionosonde and satellite) for
example GUVI.
5 NOV. 1979
EQUATORIAL
PLASMA
BUBBLES
Night
Day
7 NOV.1979
Day
57
Night
48
40
GUVI 1356 Å
32
INVARIANT LATITUDE, degr.
Paxton et al., 2005
COMPARISON with latitudinal dynamics of the
INVARIANT LATITUDE, deg.
equatorial trough in He+ density
65
Southern Hemisphere
September-October 1979
60
Subtrough
minimums
Equatorial trough
crests in He+ density
55
50
45
40
35
30
25
15
16
17
18
19
20
21
22
23
LT, hours
24
01
02
Sidorova, ASR, 2007
LATITUDINAL DYNAMICS
The latitudinal dynamics as function of LT for the subtrough minimums and for the equatorial
trough crests. Both dynamics have the same parallel character.
It suggests, that there is connection between the depletions and the equatorial vertical
plasma drift, having a great importance for equatorial trough generation.
SUBTROUGH VALUE, n
COMPARISON
70
60
50
40
30
20
10
0
EQUINOX
1978-79
R~0.72
60
50
40
3
0
20
10
0
12 14 16 18 20 22 24 26
60
50
40
30
20
10
0
SUMMER
1978-79
60
50
40
30
20
10
0
VERTICAL DRIFT VELOCITY, m/s
with equatorial vertical
plasma drift velocity
12 14 16 18 20 22 24 26 LT, hour
The best correlation (~0.72) was found for
equinox months. It was concluded that there is
the strong connection between this phenomena.
SUBTROUGH DEPTH
Averaged
plasma
drift
velocity on AE-E satellite and
Jicamarca UHF radar data.
Fejer, ATP, 1981
Fejer et al., JGR,1995-96
Subtrough Depth / Vertical
Plasma Drift: CORRELATION
Variations of the subtrough depth and the
equatorial vertical plasma drift velocity as
function of LT were compared. As reference
the averaged velocity data, taken from Dr.
Fejer articles, were used. It was revealed
that there is striking similarity in the
development dynamics for the different
seasons (for example, equinox and summer).
BUBBLE RISE SCHEME and subtrough profiles
Topside ionosphere
HEIGHT, km
SUBTROUGHS
Не+ Density
DIP LATITUDE, degr.
Hapex~2000 km and more
h′F ~ 400 km
Plasmasphere
Topside ionosphere
L=Hapex - h′F
L ~ 1600 km
T= 2.5 3 hours
V=L/T= 150 180 m/s
DIP LATITUDE, deg.
ISS-b
altitudes
Moreover, the estimation of the model rise velocity for He+
density depletions shows that the velocity is ~150 m/s
and slightly more. This estimation is in well agreement
with the typical plasma bubble velocities, obtained for the
same period from the ionosonde [1], VHF radar [2], AE-C
[3] satellite observations.
SUBTROUGH VALUE, n
Altitude,
km
70
60
50
40
30
20
10
0
EQUINOX
1978-79
60
50
40
3
0
20
10
0
12 14 16 18 20 22 24 2
60
50
40
30
20
10
0
SUMMER
197879
1 14 16 18 20 22 24 2
2
60
50
40
30
20
10
0
VERTICAL DRIFT VELOCITY, m/s
RISE VELOCITY ESTIMATION
LT, hour
Sidorova, ASR, 2007
[1] Abdu et al., JGR. (1983)
[2] Woodman, La Hoz, JGR. (1976)
[3] McClure et al., JGR. (1977)
COMPARISON
with ESF statistics
Abdu et al.,ASR, 2000
Sidorova, ASR, 2007
ISS-b
APR
MAR
Fortaleza, 4
R=0.67
FEB
JAN
DEC
NOV
R=0.6
OCT
SEP
Cachoeira Paulista, 23
AUG
JUL
JUN
MAY
18 19 20 21 22 23 24 01 02 03 04 05 06 07 08
LOCAL TIME, hours
Depletion/ESF Statistics: CORRELATIONS
The comparative analysis shows good enough correlations. It
is revealed that the correlation coefficient is about ~0.67 for
the subtroughs and station Fortaleza, and about ~0.6 for the
subtroughs and station Cachoeira Paulista.
18
20
22
24
02
04 06 08
LOCAL TIME, hours
COMPARISON
with ESF statistics
Fortaleza, 4
ISS-b
APR
MAR
FEB
JAN
DEC
NOV
OCT
Cachoeira Paulista, 23
SEP
AUG
JUL
JUN
MAY
18 19 20 21 22 23 24 01 02 03 04 05 06 07 08
LOCAL TIME, hours
18
Sidorova, ASR, 2007
20
22
24
02
04
06
08
LOCAL TIME, hours
Abdu et al., ASR, 2000
Sketch of Plasma Bubble Dynamics
Altitude, km
He+ Density Depletions
(Bubbles)
All
Plasmasphere
Topside ionosphere
ISS-b
altitudes
Ionosphere
DIP LATITUDE, deg.
mentioned facts allow to put
forward the idea that the
ESF/plasma bubbles and He+
density depletions may be
considered as phenomena of the
same plasma bubble origin. In
other words the plasma bubbles,
reaching the topside ionosphere
altitudes, are mostly seen not in
electron density but in He+
density. (At this picture you can
see the model of the plasma
bubble development at the
topside
and
plasmasphere
altitudes.)
PUBLICATIONS
Article: Distinction and classification of the troughs and subtroughs in He+
density from ISS-b satellite data at 1000-1200 km altitudes, A. Karpachev,
L. Sidorova,
J. Atm. Solar-Terr. Phys., 65, 997-1006, 2003.
Article: He+ density topside modeling based on ISS-b satellite data,
L. Sidorova, Advances in Space Research, 33, 850-854, 2004.
Article: Plasma bubble phenomenon in the topside ionosphere
L. Sidorova, Advances in Space Research, 39 (2007), 1284-1291, DOI:
10.1016/j.asr.2007.03.067
Article: Equatorial Plasma Bubbles at Altitudes of the Topside Ionosphere,
L. Sidorova, Geomagnetism and Aeronomy, 49 (1), 56-65, 2008.
Book: Topside plasma bubbles bubbles, seen as He+ density depletions
L. Sidorova, International Conference, Fundamental Space Research,
Conference Proceedings, Sunny Beach, Bulgaria, 21-28 Sept., (2008),
p.238-241
MOTIVATION
Abdu et al., ASR, 2000
Fortaleza, 4
R=0.67
Sidorova, ASR, 2007
ISS-b
APR
MAR
FEB
JAN
Cachoeira Paulista, 23
DEC
NOV
OCT
SEP
AUG
JUL
JUN
MAY
There is very well
COINCIDENCE of the
ESF regional maps,
obtained over Brazilia,
and
the global map of He+
density depletion
statistics
18 19 20 21 22 23 24 01 02 03 04 05 06 07 08
LOCAL TIME, hours
R=0.6
WHY?
ASSUMPTIONS
LONGITUDINAL OCCURRENCE
PROBABILITY
Equatorial
F-region
Irregularities
He+ Density
Depletions
Similarity ?
distribution
For
validation Predominant
of
the
obtained
results over
it
is
necessary
to have the detailed He density depletion occurrence probability with respect to longitude
- to compare them with same
statistics
of the equatorial
F-region irregularities.
SAA
(270-330)
?
+
We believe that comparison will show the similarity of these statistics.
We also believe that comparison will show the predominant area of the both statistics, covered the
Brazilian longitudes (270-330) or South Atlantic Anomaly (SAA).
Let’s test these assumptions.
COMPARED DATA
Years
F10.7
2550
INVLAT
1978-79
150220
~1100 km
20
DIPLAT
1978-80
150220
19-06 LT
300-475 km
20
DIPLAT
1978-80
150220
P1
18-06 LT
400-500 km
20
DIPLAT
1969-70
~150
ROCSAT
P3
18-06 LT
~600 km
15
DIPLAT
1999-04
140180
Hinotori
PB650
19-06 LT
650 km
20
DIPLAT
1981
~200
Data
Parameter
LT
interval
Heights
Present study
ISS-b
PHe+ den.dep.
20-04 LT
~1100 km
Maryama, Matuura,
1980, 1984
ISS-b
PRSF, ESF
18-06 LT
McClure et al., 1998
AE-E
P
Basu et al., 1976
OGO-6
Su et al., 2006
Watanabe, Oya, 1986
Study
Latitudes
For this aim let’s take the data, pointed in the table
Equatorial F-region Irregularities
P RO BABIL IT Y ,%
70
60
50
40
30
20
10
0
P R O B A B IL IT Y ,%
70
60
50
40
30
20
10
0
120
P RO BABIL IT Y ,%
70
60
50
40
30
20
10
0
120
P RO BABIL IT Y ,%
McClure et al., JGR,
1998, AE-E, P
70
60
50
40
30
20
10
0
120
Maruyama, Matuura, Watanabe, Oya, JGG,
RRL,1980, ISS-b, PRSF 1986, Hinotori , PB650
70
60
50
40
30
20
10
0
120
180
180
180
180
240
240
240
240
300
300
300
300
0
0
0
0
L O N G IT U D E , deg r.
60
60
60
60
70
60
50
40
30
20
10
0
70
60
50
40
30
20
10
0
12 0
70
60
50
40
30
20
10
0
12 0
70
60
50
40
30
20
10
0
12 0
12 0
1 80
1 80
1 80
1 80
24 0
24 0
24 0
24 0
30 0
3 00
3 00
3 00
0
0
0
0
60
60
60
70
60
50
40
30
20
10
0
70
60
50
40
30
20
10
0
12 0
70
60
50
40
30
20
10
0
12 0
70
60
50
40
30
20
10
0
12 0
60
12 0
1 80
1 80
1 80
1 80
L O N G IT U D E , d eg r.
Basu et al., Radio. Sci.,
1976, OGO-6, P1
Su et al., JGR, 2006
ROCSAT , P3
24 0
24 0
24 0
24 0
30 0
3 00
3 00
3 00
0
0
0
0
60
60
60
60
L O N G IT U D E , d eg r.
70
60
50
40
30
20
10
0
70
60
50
40
30
20
10
0
120
70
60
50
40
30
20
10
0
120
70
60
50
40
30
20
10
0
120
120
180
240
180
240
180
240
180
240
100
90
80
70 W IN TE R
60
50 ± 20° D IP L A T
40 18-06 LT
30
20
10
0
180
240
300
0
L O N G ITU D E , deg r.
300
300
300
0
0
0
0
LO N G ITU D E , degr.
100
90
80
70
60
50
40
30
20
10
0
120
300
60
60
60
60
60
70
60
50
40
30
20
10
0
70
60
50
40
30
20
10
0
70
60
50
40
30
20
10
0
W IN TE R
± 20° D IP L A T
18(19)-06 LT
VERNAL
± 20° D IP LA T
18(19)-06 LT
SUMMER
± 20° D IP LA T
18(19)-06 LT
A U TU M N
± 20° D IP L A T
18(19)-06 LT
SEASONAL INTERVALES
Present study
SEASON
Maryama,
Matuura,
1980, 1984
McClure et
al., 1998
Su et al.,
2006
Watanabe
Oya, 1986
WINTER
22 окт.-22 фев.
10 нояб.-12
марта
ноябрь-январь
декабрь
ноябрьянварь
VERNAL
22 янв.-22 мая
9 фев.-13
июня
февральапрель
март
февральапрель
SUMMER
22 апр.-22 авг.
апрель-июнь,
август
май-июль
июнь
май-июль
AUTUMN
22 июл.-22
нояб.
11 авг.-11 дек.
августоктябрь
сентябрь
августоктябрь
Basu et al.,
1976
ноябрьдекабрь
P R O B A B IL IT Y ,%
70
60
50
40
30
20
10
0
P R O B A B IL IT Y ,%
70
60
50
40
30
20
10
0
120
P R O B A B IL IT Y ,%
70
60
50
40
30
20
10
0
120
P R O B A B IL IT Y ,%
INTEGRATED EQUATORIAL DATA
70
60
50
40
30
20
10
0
120
70
60
50
40
30
20
10
0
120
180
180
180
180
240
240
240
240
300
300
300
300
0
0
0
0
L O N G IT U D E , d e g r.
60
60
60
60
70
60
50
40
30
20
10
0
70
60
50
40
30
20
10
0
70
60
50
40
30
20
10
0
W IN T E R
± 2 0 ° D IP L A T
1 8 (1 9 )-0 6 L T
VERNAL
± 2 0 ° D IP L A T
1 8 (1 9 )-06 L T
SUMMER
± 2 0 ° D IP L A T
1 8 (1 9 )-0 6 L T
AUTUM N
± 2 0 ° D IP L A T
1 8 (1 9 )-0 6 L T
He+ DENSITY DEPLETIONS STATISTICS
P RO BABIL IT Y ,%
NORTHERN
HEMISPHERE
WINTER
70
60
50
40
30
20
10
0
P RO BABIL IT Y ,%
SOUTHERNH
EMISPHERE
70
60
50
40
30
20
10
0
70
60
50
40
30
20
10
0
He+ DENSITY DEPLETIONS
120 180 240 300
0
0
LONGITUDE, degr.
70
60
50
40
30
20
10
0
60
He+ DENSITY DEPLETIONS
120 180 240 300
VERNAL
60
70
60
50
40
30
20
10
0
70
60
50
40
30
20
10
0
70
60
50
40
30
20
10
0
He+ DENSITY DEPLETIONS
120 180 240 300 0
0
LONGITUDE, degr.
70
60
50
40
30
20
10
0
60
60
70
60
50
40
30
20
10
0
NO DATA
LONGITUDE, degr.
70
60
50
40
30
20
10
0
70
60
50
40
30
20
10
0
60
70
60
50
40
30
20
10
0
70
60
50
40
30
20
10
0
He+ DENSITY DEPLETIONS
120 180 240 300
60
He+ DENSITY DEPLETIONS
120 180 240 300 0
AUTUMN
70
60
50
40
30
20
10
0
He+ DENSITY DEPLETIONS
120 180 240 300 0
70
60
50
40
30
20
10
0
He+ DENSITY DEPLETIONS
120 180 240 300
SUMMER
0
60
70
60
50
40
30
20
10
0
He+ DENSITY DEPLETIONS
120 180 240 300 0
LONGITUDE, degr.
60
P R O B A B IL I T Y , %
COMPARISON: VERNAL
70
60
50
40
30
20
10
0
H e+ D E N S IT Y D E P L E T IO N S
P R O B A B IL IT Y ,%
P R O B A B IL IT Y ,%
12 0
70
60
50
40
30
20
10
0
70
60
50
40
30
20
10
0
70
60
50
40
30
20
10
0
1 80
24 0
30 0
0
1 80
24 0
30 0
3 60
70
60
50
40
30
20
10
0
1 80
24 0
30 0
0
L O N G IT U D E , d eg r.
E q u ato r
± 20° D IP L A T
18(19)-06 L T
F-region Irregularities:
Integrated Data
EQUATOR
60
H e+ D E N S IT Y D E P L E T IO N S
12 0
He+ Density Depletions
NORTH
60
F-R EG IO N IR R E G U LA R IT IE S
12 0
N o rth e rn H .
20 -5 0 °IN V L A T
20 -0 4 L T
60
70
60
S o u th e rn H .
50
2 0 -5 0 ° IN V L A T
40
30 2 0 -0 4 L T
20
10
0
He+ Density Depletions
SOUTH
P RO BABIL IT Y ,%
COMPARISON: AUTUMN
70
60
50
40
30
20
10
0
H e+ D EN SITY D EP LETIO N S
P R O B A B IL IT Y ,%
120
180
240
300
0
70
60
50
40
30
20
10
0
180
240
300
360
70
60
E q uator
50
40 ± 20° D IP L A T
30 18(19)-06 LT
20
10
0
180
240
300
360
LO N G ITU D E , degr.
F-region Irregularities:
Integrated Data
EQUATOR
60
H e+ D EN SITY D EP L ETIO N S
120
He+ Density Depletions
NORTH
60
F-R E G IO N IR R E G U L A R IT IE S
70
60
50
40
30
20
10
0
120
P R O B A B IL IT Y ,%
70
60
N orthern H .
50
40 20-50°IN V LA T
30 20-04 LT
20
10
0
60
70
60
S outhern H .
50
40 20-50° IN V L A T
30 20-04 LT
20
10
0
He+ Density Depletions
SOUTH
COMPARISON
shapes of variations
P R O B A B IL IT Y ,%
180
240
300
0
120
70
60
50
40
30
20
10
0
180
240
300
0
180
240
300
0
LONG ITUDE, degr.
70
60
50
40
30
20
10
0
70
60
50
40
30
20
10
0
60
180
240
300
0
60
F-REG IO N IRREG U LARITIES
120
70
60
50
40
30
20
10
0
70
60
50 Northern H.
40 20-50° INVLAT
30 20-04 LT
20
10
0
H e+ D EN SITY D EPLETIO N S
120
60
H e+ D EN SITY D EPLETIO N S
120
70
60
50
40
30
20
10
0
60
F-REG IO N IRREG U LARITIES
70
60
50
40
30
20
10
0
P RO BABIL IT Y ,%
H e+ D EN SITY D EPLETIO N S
120
P R O B A B IL IT Y ,%
70
60
50
40
30
20
10
0
P R O B A B IL IT Y ,%
70
60
50
40
30
20
10
0
VERNAL
P R O B A B IL IT Y ,%
P RO BABIL IT Y ,%
AUTUMN
70
60
50
40
30
20
10
0
180
240
300
0
60
H e+ D EN SITY D EPLETIO N S
120
180
240
300
0
LO NG ITUDE, degr.
70
60
50 Equator
40
± 20° DIPLAT
30
18(19)-06 LT
20
10
0
60
70
60
Southern H.
50
20-50° INVLAT
40
30 20-04 LT
20
10
0
It was revealed that
the EFIs show good
enough similarity both
with
northern
and
southern variations of
the depletions.
The depletion statistic
plots can be shifted
slightly in longitudes,
however they have the
common
(with
irregularities) shape in
variations.
Hence, our primary
assumption
about
similarity in shape of
variations is validated.
COMPARISON: WINTER
P R O B A B IL IT Y ,%
P R O B A B IL I T Y , %
H e+ D E N S IT Y D E P L E T IO N S
70
60
50
40
30
20
10
0
100
90
80
70
60
50
40
30
20
10
0
70
60
50
40
30
20
10
0
12 0
24 0
30 0
0
60
F -R E G IO N IR R E G U L A R IT IE S
120
P RO BABIL IT Y ,%
1 80
70
60
50
40
30
20
10
0
180
240
300
360
180
240
300
0
L O N G IT U D E , d eg r.
100
90
80
E q u a to r
70
± 2 0 D IP L A T
60
50
1 8 -0 6 L T
40
30
20
10
0
He+ Density Depletions
NORTH
F-region Irregularities:
Integrated Data
EQUATOR
60
70
60
50
40
30
20
10
0
H e+ D E N SIT Y D E P L E T IO N S
12 0
N o rth e rn H .
25 -5 0 ° IN V L A T
20 -0 4 L T
60
S o u th ern H .
25-50° IN V L A T
20-04 L T
He+ Density Depletions
SOUTH
P R O B A B IL IT Y ,%
70
60
50
40
30
20
10
0
P R O B A B IL IT Y ,%
70
60
50
40
30
20
10
0
P R O B A B IL I T Y , %
COMPARISON: SUMMER
70
60
50
40
30
20
10
0
H e+ D EN SIT Y D E P L E TIO N S
N O D A TA
120
120
12 0
180
240
300
0
F-R EG IO N IR R EG U LA R ITIES
24 0
300
0
L O N G IT U D E , d eg r.
He+ Density Depletions
NORTH
60
180
240
300
0
60
H e+ D E N SIT Y D E P L E T IO N S
180
70
60
50 N o rthern H .
40 25-50° IN V L A T
30 20-04 LT
20
10
0
60
70
60
E quator
50
40 ±20 D IP LA T
30 18-06 LT
20
10
0
F-region Irregularities:
Integrated Data
EQUATOR
70
60
S o u th ern H .
50
25-50 IN V L A T
40
30 20-04 L T
20
10
0
He+ Density Depletions
SOUTH
COMPARISON
shapes of variations
70
60
50
40
30
20
10
0
SUMMER
70
60
50
40
30
20
10
0
H e+ D EN SITY D EPLETIO N S
120
180
240
300
0
P RO BABIL IT Y ,%
P RO BABIL IT Y ,%
WINTER
70
60
50
40
30
20
10
0
60
H e+ D EN SITY D EPLETIO N S
NO DATA
120
P RO BABIL IT Y ,%
120
70
60
50
40
30
20
10
0
180
240
300
0
180
240
300
0
60
120
70
60
50
40
30
20
10
0
240
300
0
60
F-REG IO N IRREG U LARITIES
70
60
50
40
30
20
10
0
60
H e+ D EN SITY D EPLETIO N S
120
P R O B A B I L IT Y , %
70
60
50
40
30
20
10
0
P RO BABIL IT Y ,%
P RO BABIL IT Y ,%
F-R EG IO N IRR EG U LARITIES
70
60
50
40
30
20
10
0
180
70
60
50
40
30
20
10
0
180
240
300
0
70
60
Equator
50
40 ±20 DIPLAT
30 18-06 LT
20
10
0
60
70
60
Southern H .
50
25-50 INVLAT
40
30 20-04 LT
20
10
0
H e+ D EN SITY D EPLETIO N S
120
180
240
300
0
LO N G ITUDE, degr.
LO N G ITUD E, degr.
70
60
50 Northern H.
40 25-50 INVLAT
30 20-04 LT
20
10
0
60
It was revealed that
the EFIs show good
enough similarity both
with
northern
and
southern variations of
the depletions.
The depletion statistic
plots can be shifted
slightly in longitudes,
however they have the
common
(with
irregularities) shape in
variations.
Hence, our primary
assumption
about
similarity in shape of
variations is validated.
COMPARISON
seasonal distributions
NORTHERN HEMISPHERE
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
-180 -150 -120
90
80
70
65
60
55
50
45
40
35
30
25
20
Northern
hemisphere
15
10
5
0
-90
-60
-30
0
30
60
90
120
150
180
SOUTHERN HEMISPHERE
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
-180 -150 -120
All depletion statistics
were gathered into the
map,
plotted
with
respect to season and
longiude for
90
80
70
65
60
55
50
45
40
35
30
25
20
15
10
5
-90
-60
-30
0
30
60
90
120
150
180
0
Southern
hemisphere
COMPARISON
seasonal distributions
-180 -160 -140 -120 -100 -80 -60 -40 -20
80
0
20
40
60
80 100 120 140 160 180
80
60
60
NORTHERN HEMISPHERE
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
90
80
40
40
65
60
55
50
45
40
35
30
25
20
20
20
-180
70
-150
-120
-90
-60
-30
0
30
60
90
120
150
15
10
5
0
180
0
0
SOUTHERN HEMISPHERE
-20
-20
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
80
70
65
60
55
50
45
40
35
-40
-40
-180
90
30
25
20
15
10
5
-150
-120
-90
-60
-30
0
30
60
90
120
150
180
-60
-60
-80
-180 -160 -140 -120 -100 -80 -60 -40 -20
0
240° - 280 ° - 320° - 0 °
20
40
-
60
60 °
-80
80 100 120 140 160 180
0
TABLE: He+(H+) depletion observations
Satellite
Depletion
in ions
Year, month
Registration
altitudes, km
Publications
F10.7
Solar
cycle
OGO-4
H+
21 Sept. 1967
(7 cases)
9,10,18 Feb. 1968
April 1968
April 1968
700-900
~140-150
highmaximal,
20th
~800
Taylor,Grebowsky,Walsh, 1971
Taylor and Cordier,
1974
Chen,Grebowsky, Taylor, 1975
Taylor,Grebowsky, Chen, 1975
Taylor,Grebowsky, Chen, 1975
10 November 1969
August (15 cases),
October (50 cases),
Nov. (2 cases) 1969
900-1100
700-1100
Taylor and Cordier,
Present study
He+
OGO-6
H+
He+
600-800
1974
~150
~140-150
~150
maximal,
20th
~150
Oreol-1
He+
10 January 1972
500-600
Ershova et al.,
1977
~140
high, 20th
ISIS-2
H+
4-6 August 1972
1440-1360
Brace et al.,
1974
~120
moderate,
20th
Oreol-2
H+
8-9 January 1974
18 January 1974
600-800
Sivtseva and Ershova,
Sivtseva et al.,
1977
1982
~80
ISS-b
He+
Aug. 1978 – Dec.
1979
(700 cases for ~4000
passes)
900-1100
Karpachev and Sidorova, 1999
~150-220
high, 21th
DE-2
H+
He+
7-10 Nov. 1981
7-10 Nov. 1981
~1000
~1000
Horwitz, Comfort et al.,
1990
~200
maximal,
21th
IntercosmosBulgaria-1300
H+
12 August 1981–
30 December 1981
830-906
Gousheva et al,
2006
~200
maximal,
21th
low, 20th
He+ DEPLETIONS and SOLAR ACTIVITY
Publications
Years
F10.7
Solar cycle
DE-1; DE-2
Horwitz et al.
JGR, 1990
Oreol-1
Ershova et al.
Kos. Issl., 1977
1981
F10.7 ~200
max., 21th
1972
F10.7 ~140
high, 20th
OGO-4
Taylor, Grebowsky
et al.,JATP,1975
OGO-6
Present study
1968
F10.7 ~150
max., 20th
1969
F10.7 ~160
max., 20th
1978-79
F10.7 ~200
high, 21th
ISS-b
Karpachev, Sidorova
JASTP, 1999
Many cases of observations were revealed on the OGO-4, the OGO-6, DE-2 and
ISS-b data. It was also noticed that the most of the cases are revealed during
the high and maximal solar activity periods.
QUESTION
It is reasonable to ask.
Why the topside ionosphere plasma
bubbles, seen as He+ density
depletions, are more visible during
high and maximal solar activity periods?
He+ DENSITY BACKGROUND
SOLAR MAXIMUM
SOLAR MINIMUM
ABSOLUTE CONTENT
FRACTIONAL CONTENT
He+
Arecibo Ion Data: 14-15 October 2001
ABSOLUTE CONTENT
FRACTIONAL CONTENT
He+/Ne
He+
Arecibo Ion Data: 26-27 October 1997
He+/Ne
Wilford et al., JGR, 2003
Let’s pay attention on the He+ density background during solar maximums and
minimums, taken from Wilford article. You can see very well developed He+ density layer
at the topside ionosphere altitudes in solar maximum and and poor layer in solar
minimum.
BUBBLE FORMATION:
classic schema
And now let’s take the
model of the plasma
bubble
formation
as
suggested by Woodman
and La Hoz. You can easily
notice that the value of the
background density is very
important for the bubble
formation.
Apparently, this picture is
also correct if the separate
plasma component is under
consideration. I mean the
He+ density.
Woodman and La Hoz, JGR, 1976
Schematic
Representation
Radar (ALTAIR)
Observations
PLASMA BUBBLES AND ESF
Tsunoda et al., JGR, 1982
Woodman and La Hoz,
JGR, 1976
The model plasma bubble and the real
ESF/plasma bubbles, taken from radar
observation.
MODEL: plasma bubbles, seen as He+
density depletions
SOLAR MAXIMUM
SOLAR MINIMUM
And now let’s integrate the model plasma bubble
development and the background in He+ density.
MODEL: plasma bubbles, seen as He+
density depletions
SOLAR MAXIMUM
SOLAR MINIMUM
Arecibo Ion Data: 14-15 October 2001
Arecibo Ion Data: 26-27 October 1997
Good conditions for observations
Bad conditions for observations
Really, the more convenient conditions for
observations of the He+ density depletions
take place during high and maximal solar
activity. Because there is very well
developed He+ density layer in the topside
ionosphere during this period.
On the other hand there are the bad
conditions for the He+ density depletion
observation in solar minimum, when the
background layer is poor.
SUMMARY
Обнаружено довольно хорошее подобие долготных статистик
экваториальных неоднородностей F-области и областей
пониженной концентрации He+ (субпровалов).
Выявлено, что регион долготного доминирования
(преобладания) субпровалов He+ - это регион Америки,
Атлантики и Африки.
Выявлено, что области пониженной концентрации He+
(субпровалы) – это типичное явление верхней ионосферы для
периодов высокой и максимальной солнечной активности.
Полученные результаты могут рассматриваться в качестве
нового свидетельства идеи экваториального происхождения
субпровалов в концентрации He+.
СПАСИБО !
Acknowledgements
• I express my gratitude to ISS Research and
Operation Committee, Japan, for providing the
opportunity to us the ISS-b data.
• The author would like to express sincere thanks to
• Dr. Yu.Ya. Ruzhin (Russia)
• Dr. A.T. Karpachev (Russia)
• Dr. M.A. Abdu (Brazil)
• Dr. R.F. Woodman (Peru)
• Dr. R. Tsunoda (USA)
for the useful advices and discussions.
ОБЛАСТИ КОНКУРЕНЦИИ /ДОМИНИРОВАНИЯ Не+
H900 km
O+
He+
Heelis et al., J. Geophys. Res., 1990
ОБЛАСТИ КОНКУРЕНЦИИ /ДОМИНИРОВАНИЯ Не+
1981
F10.7~200
H900 km
O+
He+
Heelis et al., J. Geophys. Res., 1990
Возможные высоты подъема
плазменного пузыря
О возможности существования плазменных пузырей на
высотах верхней ионосферы говорилось неоднократно (см.,
например, (Woodman, La Hoz, 1976; Tsunoda et al., 1982).
Более того существуют сообщения о том, что плазменные
пузыри «видят» на высотах 2500 км (Sahai, 1994) и даже
выше – 3500 км (Burke, 1979). Ряд авторов полагает, что
статистически «потолок» высоты обнаружения плазменных
пузырей
(потолочнаяceiling
height)
находится
приблизительно на 2000 км (Su, 2006). Наконец, эти
утверждения подкрепляются результатами численного
моделирования (см., например, Huba et al. 2008), согласно
которым плазменные пузыри могут подниматься до высот
1600 км и выше.
Sahai, Y. et al., J. Atmos. Terr. Phys., 1994, V. 56, P.1461.
Burke, W.J. et al., Planet. Space. Sci., 27, 593, 1979.
Su, S.-Y. et al., J. Geophys. Res., 111, A06305, doi: 10.1029/2005JA011330, 2006.
Huba, G.R. et al., Geophys. Res. Lett., V. 35, L10102, doi:10.1029/2008GL033509, 2008.
Magnetic meridional wind component
Model calculations, based on HWM90
model (Maruyama, JGR, 1996)
Positive values are for
southward orientation.
•
•
•
Declination angle =20є
Equator
Height =350 km
Maruyama, JGR, 1996
Diurnal variations of the magnetic
meridional wind component: different
seasons.
For comparison the diurnal variations of the
magnetic meridional wind component was
chosen. These calculations were made by
Dr. Maruyama on the base of the empirical
model of Hedin for the different seasons,
for equator, declination angle about 20є and
F- region altitude..
20
0
-2 0
-4 0
-6 0
-80
-1 0 0
14 0
120
100
80
60
40
20
0
-2 0
20
10
0
12
16
18
20
22
24
26
28
30
32
34
36
20
10
0
12
14
16
18
20
22
24
26
28
30
32
34
36
60
40
20
0
-2 0
-4 0
-6 0
20
10
0
12
•
14
14
16
18
20
22
24
26
28
30
32
34
36
PROBABILITY,%
V m e rid .,m /s
V m e rid ., m /s
V m e rid ., m /s
COMPARISON
WINTER
R=0.7
SUMMER
R=0.67
EQUINOX
R=0.87
So, according to these results the generation of He+ density depletions
seriously suffer from meridional wind. It is clearly seen the modulation effect of
the occurrence probability from meridional wind. The local time occurrence
probability can be significantly suppressed by the wind of as northward
orientation (negative values) as southward orientation (positive values).
Документ
Категория
Презентации по английскому языку
Просмотров
10
Размер файла
8 183 Кб
Теги
1/--страниц
Пожаловаться на содержимое документа