close

Вход

Забыли?

вход по аккаунту

?

Metal-Oxide-Semiconductor Fields Effect Transistors (MOSFETs)

код для вставкиСкачать
Introduction to
Metal-Oxide-Semiconductor
Field Effect Transistors
(MOSFETs)
Chapter 7, Anderson and Anderson
MOSFET
•
•
•
•
•
•
•
History
Structure
Future
Review
Threshold Voltage
I-V Characteristics
Modifications to I-V:
–
–
–
–
–
•
•
•
•
•
Depletion layer correction (Sup. 3)
Mobility, Vsat
Short Channel Effects
Channel Length Modulation
Channel Quantum Effects
MOSFET Scaling and Current Topics (Literature + Sup. 3)
Subthreshold Behavior
Damage and Temperature (Sup. 3)
Spice (Sup. 3)
HFET, MESFET, JFET, DRAM, CCD (Some in Sup. 3)
MOSFET History (Very Short!)
• First Patents:
– 1935
• Variable Capacitor Proposed:
– 1959
• Silicon MOS:
– 1960
• Clean PMOS, NMOS:
– Late 1960s, big growth!
• CCDs:
– 1970s, Bell Labs
• Switch to CMOS:
– 1980s
Structure: n-channel MOSFET
(NMOS)
body
(bulk or
B
substrate)
source
S
y
gate: metal or heavily doped poly-Si
G
drain
IG=0
D
ID=IS
IS
metal
oxide
n+
n+
p
x
L
W
MOSFET Future (One Part of)
• International Technology Roadmap for
Semiconductors, 2008 update.
• Look at size, manufacturing technique.
From Intel
Structure: n-channel MOSFET
(NMOS)
body
(bulk or
B
substrate)
source
S
y
gate: metal or heavily doped poly-Si
G
drain
IG=0
D
ID=IS
IS
metal
oxide
n+
n+
p
x
L
W
MOSFET Scaling
ECE G201
Gate
prevents “top” gate
Fin (30nm)
BOX
Circuit Symbol (NMOS)
enhancement-type: no channel at zero gate voltage
D
ID= IS
G
B
(IB=0, should be reverse biased)
IG= 0
IS
S
G-Gate
D-Drain
S-Source
B-Substrate or Body
Structure: n-channel MOSFET
(NMOS)
body
(bulk or
B
substrate)
source
S
y
gate: metal or heavily doped poly-Si
G
drain
IG=0
D
ID=IS
IS
metal
oxide
n+
n+
p
x
L
W
Energy bands
(“flat band” condition; not equilibrium)
(equilibrium)
Flatbands! For this choice of materials, VGS<0
n+pn+ structure пѓ ID ~ 0
body
B
source
S
gate
G
- +
drain
D
VD=Vs
n++
oxide
n+
n+
p
L
W
Flatbands < VGS < VT (Includes VGS=0 here).
n+-depletion-n+ structure пѓ ID ~ 0
body
B
source
S
gate
G
- +
drain
D
VD=Vs
+++
n++
oxide
n+
n+
p
L
W
VGS > VT
n+-n-n+ structure пѓ inversion
body
B
source
S
n+
gate
G
- +
+++
+++
+++
n++
oxide
-----
drain
D
VD=Vs
n+
p
L
W
Channel Charge (Qch)
VGS>VT
Depletion region
charge (QB) is due
to uncovered acceptor ions
Qch
n++
n+
p
L
n+
W
(x)
Ec(y) with VDS=0
Increasing VGS decreases EB
EB
EF ~ EC
0
L
y
Triode Region
A voltage-controlled resistor @small VDS
B
S
D
- +
+++
+++
metal
- oxide
- - -
n+
VGS1>Vt
ID
increasing
VGS
n+
p
B
S
D
-+
+++
+++
+++
metal
- -oxide
- - --
n+
VGS2>VGS1
G
n+
p
cut-off
B
S
n+
D
-+
+++
+++
+++ +++
metal
- - -oxide
-----p
VDS
0.1 v
VGS3>VGS2
n+
Increasing VGS puts more
charge in the channel, allowing
more drain current to flow
Saturation Region
occurs at large VDS
As the drain voltage increases, the difference in
voltage between the drain and the gate becomes
smaller. At some point, the difference is too small
to maintain the channel near the drain пѓ pinch-off
body
B
source
S
gate
G
- +
drain
D
VDS large
+++
+++
+++
metal
oxide
n+
n+
p
Saturation Region
occurs at large VDS
The saturation region is when the MOSFET
experiences pinch-off.
Pinch-off occurs when VG - VD is less than VT.
body
B
source
S
gate
G
- +
drain
D
VDS large
+++
+++
+++
metal
oxide
n+
n+
p
Saturation Region
occurs at large VDS
VGS - VDS < VT or VGD < VT
VDS > VGS - VT
body
B
source
S
gate
G
- +
drain
D
VD>>Vs
+++
+++
+++
metal
oxide
n+
n+
p
Saturation Region
once pinch-off occurs, there is no further increase in
drain current
saturation
ID
triode
increasing
VGS
VDS>VGS-VT
VDS<VGS-VT
VDS
0.1 v
Band diagram of triode and saturation
Simplified MOSFET I-V Equations
Cut-off: VGS< VT
ID = I S = 0
Triode: VGS>VT and VDS < VGS-VT
ID = kn’(W/L)[(VGS-VT)VDS - 1/2VDS2]
Saturation: VGS>VT and VDS > VGS-VT
ID = 1/2kn’(W/L)(VGS-VT)2
where kn’= (electron mobility)x(gate capacitance)
= mn(eox/tox) …electron velocity = mnE
and VT depends on the doping concentration and
gate material used (…more details later)
Energy bands
(“flat band” condition; not equilibrium)
(equilibrium)
Channel Charge (Qch)
VGS>VT
Depletion region
charge (QB) is due
to uncovered acceptor ions
Qch
Threshold Voltage Definition
VGS = VT when the carrier
concentration in the channel
is equal to the carrier
concentration in the bulk
silicon.
Mathematically, this occurs
when fs=2ff ,
where fs is called the
surface potential
Документ
Категория
Презентации
Просмотров
9
Размер файла
2 328 Кб
Теги
1/--страниц
Пожаловаться на содержимое документа